Information Theory

Entropy and Mutual Information

Entropy

1 1
H(X)= Zp(:r) logm =E, {log p(a:)]

reEX

(X is constant) 0 < H(X) <log|X| (X is uniform)
joint entropy

Zprylog P
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conditional entropy

H(X|Y)=

Zprylog
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Relative Entropy (K-L Distance)

Z p(z) log E§>O
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D(pllq) =

Mutual Information

p(z.y)
=33 revlos oy
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= D(p(=,y) || p(z)p(y))
Conditional Mutual Information
I(X;Y | Z)

— H(X|2)- H(X |Y.2)

Chain Rule

H(X1,Xs,...,X,) = ZH(Xi | Xi_1,..., X1)
=1
I(X1, Xo, ., X3 V) = > I(X5Y | Xi1,..., Xa)

i=1

Venn Diagram

H(X,Y)
Inequalities

f(z) is convex over (a, b) if for z1, z2 € (a,b) and A € [0, 1],

(1 =A)f(z2)

Jensen’s Inequality for convex f and random variable X,

E(f(X)) = f(E(X))

Information Can't Hurt

f()\xl + (1 — )\)xg) < )\f($1) +

H(X |Y) < H(X)

Log Sum Inequality for nonnegative ay,._, and b1,

Zal log b, <Z az> log Zz 1 bz

with equality iff 3¢ is constant

D(p || ¢) is convex in the pair (p,q)

H(X) is concave of p

I(X;Y) is concave of p(z) for fixed p(y | x)

I(X;Y) is convex of p(y | x) for fixed p(x)

Markov Chain X — Y — Z if p(z,y, 2) = p(z)p(y|z)p(z|y)
Data-processing Inequality if X — Y — Z forms a Markov
Chain, then I(X;Y) > I(X; Z)

T(X) is a sufficient statistic if I(0; X) = I(6; T(X))

Fano’s Inequality
For any estimator X such that X - Y — X

H(X |Y) < H(X | X) < H(P.) + P, log | X|

Data Compression

Code

source code C for X is a mapping from & to the set of
finite-length strings from a D-ary alphabet D*

expected length L(C) = 3 ., p(z)l(x)
instantaneous(prefix) = uniquely decodable = nonsingular

Kraft Inequality

For any instantaneous code over a D-ary alphabet,

Z Dfl(z) <1

reX

(any uniquely decodable D-ary code also satisfies this)

Boundary on Optimal Code Length

Hp(X) < L* < Hp(X)+1

Wrong Code
for code assignment [(x) = {log ﬁw under real pmf p(z),

H(p)+ D@ | 9 < Ep(l(x)) < H(p)+D(pllqg +1

Asymptotic Equipartition Property

AEP

If Xq,...,X, ~p(x) are i.i.d,

1
——logp(Xy,...,X,) — H(X)
n

Typical Set

A™ s the set of sequences (Z1,...,%,) € X™ where

—n(H(X)+e) < p(.’L']_ xn) < 2—n(H(X)—e)



Consequences of AEP Jointly Typical Sequences joint entropy

o If (x1,...,2,) € A™ | then 1 h(Xy,...,X,) = —/f(x”)logf(x")dx
A = {(x",y") eEAXT x Y ‘logp(:r”) - H(X)‘ <€,
n

1
H(X)—e< T logp(1, ..., n) < H(X) +e conditional entropy

1 1
I L logply") - H(Y)| <e. |- Llogp(en )~ HOX V)| <e
- 4P| < 2nE0r ‘ " " MX|Y)= /f z,y)log f(z | y)dzdy
o For n sufficiently large, Pr {AE")} >1—e€and where p(y" | 2") = Hp(yz | )
=1 AEP for Continuous Random Variables
’Agm > (1 — e)2nHE)=0)
Joint AEP If Xi1,..., Xy ~ f(z) are i.id,
. N yn n n 1
Channel Capacity IE (X7, Y™) ~ p(2")p(y™), then ——log f(X1,..., Xn) -5 h(X)
) ) . Pr ((Xn’i}n) c AE")) < 9—n(I(X;Y)—3e)
Communication System Typical Set for Cont. Random Variables
e For n sufficiently large,
n n 1 AE"): =11 —h(X)] <
W Ehan;lel X" | Channel |Y ghancrilel w Pr ((X”,}N/”) c AE”)) > (1 —6)2_”(I(X;Y)+3€) {(331, , Tn) | o og f(x1,...,xn) — h( )| < 6}
ncoder p(y|x) ecoder . Vol (Agn)> _ ngn) dy - - dw, < 27(hCO+O)

Channel Coding Theorem F ficiently 1 p (A(n)> -1 q
Discrete Memoryless Channel I o

n (M,n) code: X™:{1,...,M} encode ym
A discrete channel is denoted by (X, p(y | z),)) g: " decode, {1,..., M} Vol (AE")) > (1 — €)2Mh(X)=9)

A discrete memoryless channel is a channel that satisfies probability of error \; = Pr(g(Y™) # i | X" = 2" (i))

pyk | 2%, 9% = p(yw | z1) maximal probability of error A(") = maXie{l,...,M} Ai Entropy of Normal Distribution
(n) M
. . average probability of error Pe™’ = M Doici i
= 1
If a channel is used without feedback, rate R — lognM hN (s, 0_2)) = log 2mec
plak | 27y 1) = play [ 27 rate R is achievable if 3 a sequence of ([2"%],n) codes 1
n 1 h(Np (i, K)) = = log(2me)"| K| (K is th i fri
Then for a DMC (without feedback by default), 5.6 — 0 asn— o0 o, K)) 2 0g(2me)" | K| (K is the covariance matrix)
n rate R is achievable & R < (C
p(y" | «") = [ [ ptvi | =) Relative Entropy and Mutual Information
i=1 .
Capacity of Parallel Channels relative entropy D(f || ) fflogf
Channel Capacity C = log (27" +2%2) mutual information I(X;Y) = [ f(x,y) log - f( ) ( )dxdy
O =ney) p f Diff 1 E
p(@ : : roperties of Differential Entropy
For a weakly symmetric channel, i.e. the rows of the tran- Differential Entropy
sition matrix p(y | ) are permutations of each other, . . I(X;Y) = D(f(z,y) || f(2)f(y)) 20
Differential Entropy h X | Y) < h(X) equality iff X, Y are independent

= log|Y| — H(row of transition matrix)

>

(X
( <h(
(X1,...,Xn) <> h(X;) equality iff X; are independent
achieved when X is uniform h(X) = - /S f(x)log f(x)dx h(X + c) h(X) h(aX)=h(X)+loglal



Gaussian Channel

Gaussian Channel with Power Constraint

n

1
Y, = X;+ Z;, Zi ~N(0,N), = 2o p
+ (0, ) n;”“"—

when X ~ A(0, P), maximum capacity is achieved,

1 P
- 5 - 71 ]. ~
C (mgm)x< I(X,Y) 5 og( +N)

Parallel Gaussian Channels

For k independent parallel Gaussian channels,
k
1 P;
C= =1 14+ =L
ave(1 %)

power is allotted by water-filling, i.e. P; = (v—N;)*, where
v is chosen such that Ele P,=P



